ТХ01 Тахометр

EAE

руководство по эксплуатации

Содержание

Введение	2
Введение 1 Назначение прибора 1	4
2 Технические характеристики и условия эксплуатации	5
2.1 Технические характеристики	
2.2 Условия эксплуатации	10
3 Устройство и работа прибора	
3.1 Принцип действия	
3.2 Устройство прибора	16
4 Работа с прибором	
4.1 Эксплуатационные ограничения	20
4.2 Подготовка к использованию и монтаж прибора на объекте	21
4.3 Режимы работы прибора	22
5 Меры безопасности	39
6 Техническое обслуживание	
7 Маркировка	41
8 Транспортирование и хранение	42
9 Комплектность	43
10 Гарантийные обязательства	44
Приложение А. Габаритные чертежи корпусов прибора	45
Приложение Б. Схемы подключения прибора	47
Приложение В. Программируемые параметры	52
Приложение Г. Юстировка прибора	
Лист регистрации изменений	72

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, эксплуатацией и техническим обслуживанием тахометра ТХ01, в дальнейшем по тексту именуемого прибор.

Прибор изготавливается в соответствии с ТУ 4278-006-46526536-2010.

Прибор изготавливается в различных исполнениях, отличающихся друг от друга питанием, конструктивным исполнением, типом встроенных выходных устройств (ВУ). Прибор может иметь исполнения без ВУ, с одним аналоговым ВУ, с одним дискретным ВУ, с двумя ВУ (аналоговым и дискретным). Информация об исполнении прибора зашифрована в коде полного условного обозначения:

Напряжение питания:

- 224 от сети переменного тока с частотой от 47 до 63 Гц (номинальные значения 50 или 60 Гц) и напряжением от 90 до 264 В (номинальные значения 110, 220 или 240 В) или от сети постоянного напряжения от 20 до 34 В (номинальное значение 24 В);
 - 24 от сети постоянного напряжения от 10,5 до 30 В (номинальные значения 12 и 24 В).

Конструктивное исполнение:

- корпус настенного крепления с размерами 105×130×65 мм и степенью защиты IP44;
- Щ2 корпус щитового крепления с размерами 96х48х100 мм и степенью защиты со стороны передней панели IP54.

Тип ВУ:

Обозначение выхода	Тип выходного сигнала						
Аналоговые ВУ							
И ЦАП «параметр-ток от 4 до 20 мА							
У	ЦАП «параметр-напряжение от 0 до 10 В»						
Į.	Дискретные ВУ						
P	Контакты электромагнитного реле						
K	Оптопара транзисторная n-p-n-типа						
С Оптопара симисторная							

RS - наличие интерфейса RS-485.

Габаритные чертежи корпусов приборов приведены в Приложении А.

Используемые аббревиатуры:

ВИП – встроенный источник питания;

ВУ - выходное устройство;

ПК – персональный компьютер;

ЦАП – цифроаналоговый преобразователь;

ЦИ – цифровой индикатор.

Соответствие символов ЦИ буквам латинского алфавита:

Ħ	Ь	Ľ	Д	Ε	F	<u>[</u>	Н	۱,	۱٦	۲	L)(0	Ò	P	9	۲	5	Ł	Ц	ц	וכ	E (¥	Ξ
Α	b	C	d	Е	F	G	Н	i	J	K	L	М	n	0	Р	ø	r	S	t	U	٧	W	X	Υ	Ζ

1 Назначение прибора

Прибор предназначен для измерения и показания частоты вращения частей машин и механизмов. В вариантах исполнения с соответствующими выходными устройствами данный прибор может применяться для автоматического регулирования частоты вращения согласно выбранной логике управления.

Также, прибор имеет функцию измерения интервала времени, в течение которого на вход прибора подается управляющий сигнал.

Прибор предназначен для использования в системах контроля и регулирования при выполнении различных технологических процессов в промышленности, сельском и других отраслях народного хозяйства, в частности для автоматизации дизельных систем.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Основные технические данные прибора представлены в таблице 2.1.

Таблица 2.1 – Основные технические данные

Параметр	Значение
Нижний предел измерения тахометра, об/мин	12
Верхний предел измерения тахометра, об/мин	150000
Класс точности тахометра	0,5
Множитель	от 0,0001 до 999
Диапазоны измерений временных интервалов	от 0 сек до 99 ч 59 мин 59 сек; от 100 ч до 9999 ч 59 мин; от 10000 ч до 9999 суток 23 ч
Предел допускаемой абсолютной погрешности измерений временных интервалов:	
 в диапазоне от 0 сек до 99 ч 59 мин 59 сек, сек, не более в диапазоне от 100 ч до 9999 ч 59 мин, мин, не более в диапазоне от 10000 ч до 9999 суток 59 ч, ч, не более 	± 90 ± 30 ± 5

Окончание таблицы 2.1

Параметр	Значение
Напряжение питания прибора TX01-224.X.XX	
от сети переменного напряжения:	
напряжение, В	от 90 до 264
	(номинальные значения 110, 220
	или 240 В)
частота, Гц	от 47 до 63
	(номинальные значения 50 и 60 Гц)
от источника постоянного тока:	
напряжение, В	от 20 до 34 В
	(номинальное значение 24 В)
Напряжение питания прибора TX01-24.X.XX от источника	от 10,5 до 30
постоянного тока, В	(номинальные значения 12 и 24 В)
Максимальная потребляемая мощность, ВА, не более:	
- TX01-24.X.XX	8
- TX01-224.X.XX	9
Скорость передачи данных по RS-485, бит/сек	2400; 4800; 9600; 14400; 19200;
	28800; 38400; 57600; 115200
Масса, кг, не более	0,5
Средний срок службы прибора, лет	12
Средняя наработка на отказ, ч	75000

Прибор имеет два дискретных входа для подключения активных датчиков, имеющих на выходе транзистор n-p-n-типа с открытым коллектором, либо контактов кнопок, выключателей, герконов, реле и других датчиков типа «сухой контакт». Характеристики входных сигналов представлены в таблице 2.2.

Таблица 2.2 – Характеристики входных сигналов

Параметр	Значение
Максимальный входной ток, мА, не более	10
Уровень сигнала, соответствующий логической единице на входе прибора, В	от 12 до 30
Уровень сигнала, соответствующий логическому нулю на входе прибора, В	от 0 до 4
Ток «логической единицы», мА, не менее	3
Ток «логического нуля», мА, не более	1,5
Максимальное входное напряжение, В, не более	30
Длительность импульса на счетном входе, мкс, не менее	120
Длительность сигнала на входе «Счет наработки», мс, не менее	300
Максимальная частота следования импульсов на счетном входе прибора, Гц. не более	2500
Фильтрация входного сигнала по частоте следования импульсов, Гц	от 1 до 2500

Прибор может иметь исполнения без ВУ, с одним ВУ (ЦАП либо дискретное ВУ) или с двумя ВУ, одно из которых – ЦАП, второе – дискретное. Характеристики ВУ представлены в таблице 2.3.

Таблица 2.3 – Характеристики ВУ

Тип ВУ	Технические характеристики	Значение
Реле электромагнитное	Максимальный ток нагрузки (при 220В 50Гц и cos φ >0,4), A, не менее	8
(P)	Максимальное напряжение нагрузки постоянного тока, В, не менее	30
Оптопара	Максимальный ток нагрузки, мА, не менее	400
транзисторная n-p- n-типа (K)	Максимальное напряжение постоянного тока, В, не менее	60
Оптопара	Максимальный ток нагрузки, мА, не менее	40
симисторная (С)	Максимальное действующее напряжение	240
в режиме	переменного тока частотой 50 Гц, В, не менее	
коммутации нагрузки		
ЦАП	Выходной сигнал постоянного тока, мА	от 4 до 20
«параметр-ток»	Сопротивление нагрузки, Ом	от 0 до 1300
(N)	Допустимый диапазон напряжения питания ЦАП, В	от 10 до 36
	Основная приведенная погрешность выходов ЦАП, %, не более	0,5
ЦАП	Выходной сигнал постоянного напряжения, В	от 0 до 10
«параметр-	Сопротивление нагрузки, кОм, не менее	2
напряжение»	Напряжение питания ЦАП, В	от 15 до 36
(Y)	Основная приведенная погрешность выходов ЦАП, %, не более	0,5

Габаритные размеры прибора представлены в таблице 2.4.

Таблица 2.4 – Габаритные размеры прибора

Тип корпуса	Размеры, мм
Настенный Н	105×130×65
Щитовой Щ2	96×48×100

Степень защиты корпуса типа H – IP44. Степень защиты корпуса типа Щ2 со стороны лицевой панели IP54, со стороны клемм IP20.

Прибор является средством измерительной техники.

Предел допускаемой относительной погрешности измерений прибором в режиме тахометра не более \pm 0,5 %.

Предел допускаемой относительной погрешности измерения временных интервалов прибором в режиме счетчика наработки не более \pm 0,5 %.

Основная приведенная погрешность выходов ЦАП не более ± 0,5 %

По эксплуатационной законченности приборы относятся к изделиям второго порядка.

Изоляция токоведущих цепей удовлетворяет требованиям ГОСТ Р 52931.

Электрическое сопротивление изоляции токоведущих цепей прибора между собой в соответствии с ГОСТ Р 52931:

- 20 МОм при нормальных условиях окружающей среды;
- 5 МОм при верхнем значении температуры рабочих условий;
- 1 МОм при верхнем значении относительной влажности рабочих условий.

2.2 Условия эксплуатации

Прибор эксплуатируется при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до +70 °C;
- верхний предел относительной влажности воздуха не более 95 % при температуре +35 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931.

Приборы удовлетворяют требованиям помехоустойчивости, предъявляемым к оборудованию класса A по ГОСТ 51522.

По уровню излучения радиопомех (помехоэмиссии) приборы соответствуют нормам, установленным для оборудования класса Б по ГОСТ 51318.22.

3 Устройство и работа прибора

3.1 Принцип действия

Функциональная схема прибора приведена на рисунке 3.1.

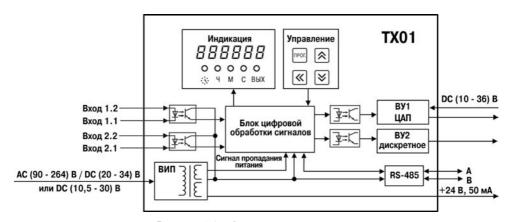


Рисунок 3.1 – Функциональная схема

Прибор представляет собой электронное устройство предназначенное для измерения и контроля скорости вращения двигателя. На счетный вход прибора поступают импульсы с датчика контролирующего одну или несколько меток на валу двигателя.

Прибор имеет два дискретных **ехода** для подключения датчиков: (Вход 1 — счетный вход, Вход 2 — «Счет наработки»). **Устройство согласования** осуществляет функцию преобразования уровней входных сигналов. Обработанные им сигналы поступают на **блок цифровой обработки**, где происходит фильтрация входных сигналов, измерение мгновенного значения частоты вращения вала, измерение времени наработки на входе «Счет наработки», перевод измеренных значений в реальные физические величины и масштабирование перед их выводом на индикатор, а так же формирование сигналов управления **ВУ** в соответствии с заданным алгоритмом.

Конфигурирование прибора осуществляется с помощью кнопок для ввода параметров прибора или с помощью ПК.

Результаты измерения или параметры настройки прибора отображаются на шестиразрядном семисегментном индикаторе, отображение состояний прибора осуществляется с помощью светодиодных индикаторов.

Связь прибора с ПК осуществляется по интерфейсу *RS-485*, что дает возможность задавать и редактировать конфигурацию прибора, контролировать его текущее состояние и показания с помощью ПК.

Примечание — Режим конфигурации прибора описан в разделе 4.3.2 данного руководства. Параметры настройки RS-485 представлены в Приложении В.

Встроенный источник питания (**ВИП**) в зависимости от исполнения прибора (с переменным или постоянным питанием) осуществляет преобразование питающего напряжения для устройства согласования, блока цифровой обработки, ВУ и формирует сигнал, свидетельствующий о пропадании питающего напряжения. Также ВИП формирует постоянное напряжение 24 ± 3 В (максимально допустимый ток нагрузки на выходе не менее 50 мА) для питания датчиков, подключаемых к входам прибора (выводы 13 и 14 клеммника).

К **входам** прибора могут быть подключены:

коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т.п.);

 датчики, имеющие на выходе транзистор n-p-n-типа с открытым коллекторным выходом.

Подключение различных входных устройств представлено в Приложении Б.

Дискретное ${\it BY}$ может быть выполнено в виде электромагнитного реле (тип P) (рисунок Б.3), транзисторной оптопары (тип K) или оптосимистора (тип C). Данное ВУ используется для управления нагрузкой (включения/выключения) непосредственно или через более мощные управляющие элементы, такие как пускатели, твердотельные реле, тиристоры или симисторы. Все выходные устройства имеют гальваническую развязку от схемы прибора.

Транзисторная оптопара применяется, как правило, для управления низковольтным реле (до 50 В). Схема подключения приведена на рисунке Б.4. Во избежание выхода из строя транзистора из-за большого тока самоиндукции параллельно обмотке реле необходимо устанавливать диод VD1 (типа КД103 или аналогичный).

Оптосимистор включается в цепь управления мощного симистора через ограничивающий резистор R1 по схеме, представленной на рисунке Б.5. Номинал резистора определяет ток управления симистора.

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров (рисунок Б.6).

Для предотвращения пробоя тиристоров или симисторов из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC-цепь.

 ${\it BY}$ аналогового типа может быть выполнено в виде ЦАП «параметр-ток» (тип И) и «параметр-напряжение» (тип У).

Преобразование «параметр-ток» осуществляется при помощи встроенного в ВУ десятиразрядного ЦАП. Полученные после преобразования сигналы могут использоваться для регистрации параметров.

Для нормальной работы приборов с ВУ типа И питание ЦАП должно осуществляться от независимого источника постоянного тока, обеспечивающего гальваническую развязку

электрической схемы прибора и схемы пользователя. Напряжение источника питания рассчитывается по формулам:

$$\begin{array}{l} U_{\text{ип мин}} \leq U_{\text{ип}} \leq U_{\text{ип макс}}; \\ U_{\text{ип мин}} = 7,5 + I_{\text{цап макс}} \; R_{\text{нагр}}; \\ U_{\text{ип макс}} = U_{\text{ип мин}} + 2,5, \end{array}$$

где $U_{\mu n}$ – напряжение источника питания, В;

U_{ип мин} – минимально допустимое напряжение источника питания, В;

U_{ип макс} – максимально допустимое напряжение источника питания, В;

Іцап макс — максимальный выходной ток ЦАП, мА;

R_{нагр} – сопротивление нагрузки ЦАП, кОм.

ВНИМАНИЕ! Значение **U**_{ип} должно входить в допустимый диапазон напряжений питания ЦАП для ВУ типа «И» (см. таблицу 2.3).

Если по какой-либо причине напряжение источника питания ЦАП превышает расчетное значение $\mathbf{U}_{\mathsf{ип \, Makc.}}$, то последовательно с нагрузкой необходимо включить ограничительный резистор, сопротивление которого рассчитывается по формулам:

$$\begin{split} R_{\text{огр.мин}} < R_{\text{огр.мом.}} < R_{\text{огр.макс}}; \\ R_{\text{огр.мин}} = \frac{U_{\text{ип}} - U_{\text{ип макс}}}{I_{\text{цап макс}}}; R_{\text{огр.макc}} = \frac{U_{\text{ип}} - U_{\text{ип мин}}}{I_{\text{цап макс}}}, \end{split}$$

где $R_{\text{огр.ном.}}$ – номинальное значение ограничительного резистора, кОм;

R_{огр.мин} – минимально допустимое значение ограничительного резистора, кОм;

R_{огр.макс} – максимально допустимое значение ограничительного резистора, кОм;

I_{цап макс} – максимальный выходной ток ЦАП, мА;

U_{ил} – напряжение источника примененного для питания ЦАП, В.

ВНИМАНИЕ! Напряжение источника питания ЦАП не должно быть более 36 В.

Пример соединения ЦАП «параметр-ток» с источником питания и нагрузкой представлен на рисунке Б.7.

В ряде случаев для питания ЦАП может быть использован встроенный в прибор источник постоянного тока 24 В, если при этом он одновременно не задействован для питания активных датчиков. При использовании встроенного источника должны быть учтены вышеизложенные требования.

Приборы с ВУ типа У оснащены формирователями сигнала постоянного напряжения, преобразующие значение выходных параметров в сигнал напряжения от 0 до 10 В. Сопротивление нагрузки R_{H} , подключаемой к ЦАП, должно быть не менее 2 кОм.

Для питания выхода ВУ типа У возможно использование встроенного источника питания 24 В, который при этом может быть задействован для питания активных датчиков.

Пример подключения выходного устройства типа «У» представлен на схеме рисунке Б.8.

ВНИМАНИЕ! Напряжение источника питания ЦАП должно быть не более 30 В.

В блоке цифровой обработки сигналов поступающие на счетный вход прибора сигналы подвергаются **фильтрации**. Фильтр характеризуется частотой входного фильтра *F-E9*.

3.2 Устройство прибора

Прибор конструктивно выполнен в пластмассовом корпусе, предназначенном для щитового или настенного исполнений. Эскизы корпусов с габаритными и установочными размерами приведены в Приложении А. Внешний вид лицевой панели прибора для корпусов настенного (Н) крепления приведен на рисунке 3.2, щитового (Щ2) крепления — на рисунке 3.3. На лицевой панели расположены элементы управления и индикации.

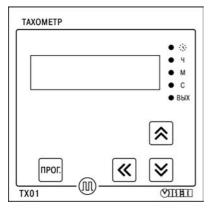


Рисунок 3.2 – Внешний вид лицевой панели прибора для корпуса настенного (H) крепления

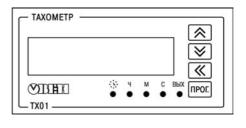


Рисунок 3.3 – Внешний вид лицевой панели прибора для корпуса щитового (Щ2) крепления

Для установки прибора в щит в комплекте поставки прилагаются крепежные элементы.

Винтовой клеммник для подсоединения внешних связей у приборов щитового исполнения находится на задней стенке. В приборах настенного исполнения он расположен внутри прибора, а в отверстиях подвода внешних связей установлены резиновые уплотнители.

Прибор имеет семисегментный индикатор красного свечения на шесть знакомест, с высотой символа 10 мм. Индикатор предназначен:

- при выполнении прибором функции тахометра для отображения текущего значения частоты следования импульсов, полученного после фильтрации и усреднения, с учетом масштабирования на измерительном входе прибора;
- при выполнении функции счетчика наработки для отображения времени наработки;
- в режиме конфигурации для отображения названия и значение выбранного параметра.

Время обновления показаний прибора в режиме тахометра равно длительности временного интервала между передними фронтами импульсов на измерительном входе прибора и не превышает 5 сек.

В режиме счетчика наработки обновление показаний происходит с интервалом в 1 сек.

Примечание – Более подробные сведения о режимах работы прибора представлены в п. 4.3.

Единичные светодиодные индикаторы:

- «∹» светодиод засвечен, если прибор ведет измерение времени наработки;
- «С» светодиод засвечен, если единицы измерения об/сек при выполнении функции тахометра, если диапазон измеренного времени наработки от 0 сек до 99 ч 59 мин 59 сек при выполнении функции счетчика наработки;
- «М» светодиод засвечен, если единицы измерения об/мин при выполнении функции тахометра, если диапазон измеренного времени наработки от 100 часов до 9999 ч 59 мин при выполнении функции счетчика наработки;
- «Ч» если единицы измерения об/ч при выполнении функции тахометра, светодиод засвечен, если диапазон измеренного времени наработки от 10000 ч до 9999 суток 23 ч при выполнении функции счетчика наработки.
- «ВЫХ» светодиод засвечен, если дискретное ВУ включено согласно выбранному режиму работы ВУ, или, если на вход ЦАП аналогового ВУ выдается цифровой сигнал, соответствующий максимальному значению тока (для ВУ типа И) или напряжения (для ВУ типа У).

Примечание – Для приборов с двумя ВУ (дискретным и аналоговым) засвечивание светодиода «ВЫХ» осуществляется в соответствии с логикой работы дискретного ВУ.

Кнопка предназначена:

- в рабочем режиме для входа в режим конфигурации из рабочего режима
- в режиме конфигурации для перехода к редактированию значения параметра после его выбора.

Кнопки 🗪 и 💆 предназначены:

- для ввода пароля с целью изменения настроек прибора (если он не равен 0);
- в режиме конфигурации для просмотра значения параметров и их редактирования.

Примечание – Нажатие и удержание кнопки **з** в рабочем режиме переводит прибор на индикацию значений счетчика наработки.

Кнопка <u>«</u> используе<u>тся</u>:

- (с кнопками [∞] и [∞]) для выбора редактируемой цифры при вводе пароля или при редактировании значения параметра;
- для выхода в рабочий режим из режима просмотра параметров.

4 Работа с прибором

4.1 Эксплуатационные ограничения

К эксплуатации и монтажу прибора должны допускаться только лица, имеющие необходимую квалификацию, изучившие данное руководство по эксплуатации и прошедшие инструктаж по технике безопасности.

ВНИМАНИЕ! В связи с наличием на винтовом клеммнике опасного для жизни человека напряжения приборы должны устанавливаться только квалифицированными специалистами. Любые подключения к прибору и работы по его техническому обслуживанию производятся только при отключенном питании прибора и подключенных к нему устройств.

Прибор подлежит в процессе эксплуатации периодическому обслуживанию. Эксплуатация прибора должна осуществляться в соответствии с требованиями технических условий и настоящего руководства по эксплуатации.

Эксплуатировать прибор допускается только при условиях, изложенных в п. 2.2. Не допускается попадание влаги на выходные контакты винтового клеммника и внутренние элементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т.п.

Запрещается самостоятельно разбирать и производить ремонт прибора.

4.2 Подготовка к использованию и монтаж прибора на объекте

Используя входящие в комплект поставки монтажные элементы крепления, необходимо установить прибор на штатное место и закрепить его. Габаритные и присоединительные размеры приборов, выполненных в различных вариантах корпусов, приведены в Приложении А.

Следует проложить линии связи, предназначенные для управляющих сигналов, соединения прибора с сетью питания и исполнительными механизмами. При выполнении монтажных работ необходимо применять только стандартный инструмент. Схемы подключения приведены в Приложении Б.

При монтаже внешних связей необходимо обеспечить их надежный контакт с винтовым клеммником прибора, для чего рекомендуется тщательно зачистить и залудить их концы. В корпусах настенного исполнения конические части уплотняющих втулок срезать таким образом, чтобы втулка плотно прилегала к поверхности кабеля. Сечение жил не должно превышать 1 мм².

Примечания

- 1 Кабельные вводы прибора настенного исполнения рассчитаны на подключение кабелей с наружным диаметром от 6 до 12 мм.
- 2 Для уменьшения трения между резиновой поверхностью втулки и кабеля рекомендуется применять тальк, крахмал и т.д.

Подсоединение проводов во всех вариантах корпусов осуществляется под винт. Для доступа к винтовому клеммнику в приборе настенного исполнения необходимо снять верхнюю крышку с прибора.

ВНИМАНИЕ! Запрещается объединять вывод «общий» (контакт 14 клеммника) прибора с заземлением оборудования. Не допускается прокладка линий управляющих сигналов в одном жгуте с силовыми проводами, создающими высокочастотные или импульсные помехи.

После подключения всех необходимых связей следует подать на прибор питание.

4.3 Режимы работы прибора

Прибор может функционировать в одном из трех режимов:

- рабочий режим;
- режим конфигурации;
- режим юстировки.

4.3.1 Рабочий режим

В рабочем режиме прибор выполняет следующие функций:

- функция тахометра;
- функция счетчика наработки.

4.3.1.1 Функция тахометра

При выполнении функции тахометра прибор производит измерение мгновенного значения длительности интервала времени Т между передними фронтами импульсов сигнала на счетном входе прибора (в секундах), вычисляет величину N/T, где N — величина, определяемая размерностью отображения измеряемой величины, выводит на индикацию полученное значение, с учетом коэффициента масштабирования. Интервал измерений тахометра задается параметром d E E R (для размерности об/сек при d E E R N=1, для размерности об/мин при d E E R N=60, для размерности об/ч при d E E R Hour N=3600). Положение десятичной точки при отображении показаний тахометра устанавливается параметром d R.

Измеренное значение может быть переведено в значения реальных физических величин с помощью множителя F. Множитель должен принимать значения от 0,0001 до 999. Точность множителя устанавливается параметром FdP.

Результаты подсчёта отображаются на шестиразрядном семисегментном индикаторе на передней панели прибора. Единицы измерения вычислений отображаются в виде засветки единичных индикаторов на передней панели прибора. При выбранной размерности об/сек

засвечен индикатор « \mathbf{C} », для размерности об/мин засвечен индикатор « \mathbf{M} », для размерности об/ч засвечен индикатор « \mathbf{V} ».

Примечания

- 1 Округление результатов измерения производится стандартным образом, в большую сторону, т.е. если в округляемом разряде цифра более или равна 5, то в следующий разряд переносится единица.
- 2 Если разрядности индикатора не хватает для отображения выбранного количества разрядов после запятой, прибор автоматически сдвигает число вправо.

Для сглаживания сигнала в приборе применяется фильтр скользящего среднего восьмого порядка. Параметр $\vec{n}\mathcal{H}_{u}.L$ определяет время (в секундах) заполнения данного фильтра. По умолчанию данный фильтр отключен ($\vec{n}\mathcal{H}_{u}.L = 0$).

4.3.1.2 Функция счетчика наработки

При наличии уровня «логической единицы» на входе «СЧЕТ НАРАБОТКИ» прибор ведет подсчет времени работы прибора (длительность интервала времени, в течение которого на входе «СЧЕТ НАРАБОТКИ» находится уровень «логической единицы»). При наличии уровня «логической единицы» на входе «СЧЕТ НАРАБОТКИ» засвечивается светодиод « > » на передней панели прибора.

Отображение на индикации текущего значения наработки осуществляется при нажатии кнопки Ана передней панели прибора и продолжается в течение всего интервала времени, пока кнопка остается нажатой. При выполнении прибором функции счетчика наработки засвечен светодиод «::». При отпускании кнопки Прибор возвращается к индикации показаний тахометра.

Отображение измеренного значения наработки на индикаторе осуществляется в виде:

- ЧЧ.ММ.СС для диапазона измеренного времени наработки от 0 с до 99 ч 59 мин 59 сек, при этом на передней панели прибора засвечен индикатор «С»;
- ЧЧЧЧ.ММ для диапазона измеренного времени наработки от 100 часов до 9999 ч 59 мин, при этом на передней панели прибора засвечен индикатор «М»;
- ДДДД.ЧЧ для диапазона измеренного времени наработки от 10000 ч до 9999 суток 23 ч, при этом на передней панели прибора засвечен индикатор «Ч»;

Примечание – **Д** – количество суток; **Ч** – часы; **М** – минуты; **С** – секунды. При превышении текущего диапазона прибор автоматически устанавливает следующий диапазон отображения результатов измерения. Предельное значение времени наработки принимает значения в диапазоне от 1 сек до 9999 суток 23 ч.

Для приборов с дискретным ВУ возможно задавать предельное значения времени наработки (см. п. 4.3.1.3), по достижении которого происходит включение ВУ.

4.3.1.3 Управление работой ВУ

Дискретное ВУ прибора (типов Р, K, C) может функционировать как устройство сравнения (компаратор). Входной величиной устройства сравнения могут быть либо результат измерения тахометра, либо измеренное значение времени наработки.

При работе ВУ в качестве устройства сравнения, когда входная величина устройства сравнения — результат измерения тахометра (параметр «Источник управления» *5-г_Е = ЕНЕНо*), выбор режима управления осуществляется с помощью параметра *оЦЕdo*. В этом случае светодиод «ВЫХ» засвечивается при включении ВУ.

Возможна работа согласно одному из следующих типов логики (см. рисунки 4.1, 4.2):

обратный гистерезис (*ollt-do* =1), ВУ включается при значениях Fтек > (U+∆) и выключается при Fтек < (U-∆);

- прямой гистерезис (**oll-do** =2), ВУ включается при значениях Fтек < (U- Δ) и выключается при Fтек > (U+ Δ);
- П-образная логика (**оЦЬ do** =3), ВУ включается при значениях (U-∆) < Fтек < (U+∆);
- U-образная логика (oll-do =4), ВУ включается при значениях Fтек < (U-Δ) и при Fтек > (U+Δ).

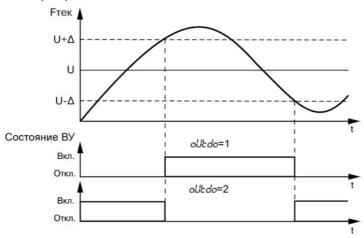


Рисунок 4.1 – Типы логики (обратный и прямой гистерезис) при работе ВУ в качестве компаратора

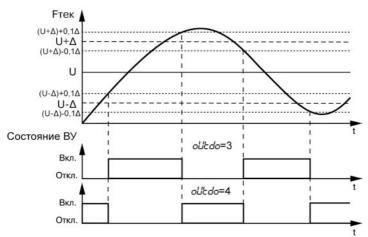


Рисунок 4.2 – П- и U-образная типы логики при работе ВУ в качестве компаратора

Примечания

- 1 При П-образной или U-образной логике для подавления дребезга при переключениях существует дополнительный гистерезис срабатывания 5 % от диапазона между границами (2Δ) (см. рисунок 4.2).
- 2 При частоте следования импульсов на счетном входе более 2500 Гц на ВУ устанавливается значение, равное значению, рассчитанному для 2500 Гц.

Уставка для управления дискретным выходом (уставка компаратора U, параметр $\mathbf{\mathit{U}do}$) и гистерезис компаратора (Δ , параметр $\mathbf{\mathit{d}U}$) устанавливаются в режиме конфигурации прибора (см. п. 4.3.2).

Управление работой дискретного ВУ отключено при **оUEdo** =0, при этом состояние ВУ задается с помощью параметра **oFFdo**.

При работе дискретного ВУ в качестве устройства сравнения, если входная величина устройства сравнения — измеренное значение времени наработки (параметр «Источник управления» $Srel = Life_k$), то включение ВУ происходит при достижении заданной уставки для управления дискретным выходом по наработке UdRY, Uhour, $Ufle_n$, $Ufle_n$.

В этом случае при включении ВУ светодиод «ВЫХ» засвечивается.

Аналоговое ВУ прибора (типов И, У) может функционировать в качестве П-регулятора и регистратора. Режим работы аналогового ВУ устанавливается с помощью параметра **оUL dRL**.

При работе ВУ в качестве **П-регулятора** происходит сравнение текущего значения измеряемой величины с заданной уставкой Т (параметр UdRL) и выдача на выход сигнала от 4 до 20 мА (для ВУ типа И) или от 0 до 10 В (для ВУ типа У), пропорционального величине отклонения. Зона пропорциональности П при этом задается параметром Δ (dPro). Выходной сигнал формируется в соответствии с установленной в параметре oUtdRL характеристикой регулятора либо по прямо-пропорциональному (oUtdRL=1), либо обратно-пропорциональному закону регулирования (oUtdRL=2). Графики, поясняющие принцип формирования управляющего тока и напряжения П-регулятора для обеих характеристик приведены на рисунках 4.3, 4.4.

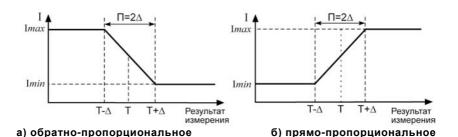


Рисунок 4.3 – Принцип формирования выходного сигнала П-регулятора для приборов с ВУ типа И

регулирование

регулирование

регулирование

регулирование

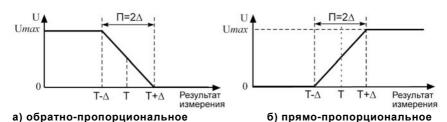


Рисунок 4.4 – Принцип формирования выходного сигнала П-регулятора для приборов с ВУ типа У

При работе ВУ в качестве **регистратора** (параметр **oll-dRL**=3) происходит сравнение измеренного значения с заданными значениями нижнего предела диапазона регистрации и значением величины всего диапазона регистрации и выдача на соответствующее ВУ аналогового сигнала в виде тока от 4 до 20 мА (для ВУ типа И) или напряжения от 0 до 10 В (для ВУ типа У), которые можно подавать на самописец или другое регистрирующее устройство. Принцип формирования выходного сигнала показан на рисунках 4.5, 4.6. При работе ВУ в качестве регистратора необходимо установить нижний и верхний пределы регистрации в параметрах **Lor** и **HCr**.

Примечание – При выходе измеренного значения за диапазон регистрации на ВУ устанавливается уровень ошибки: 22,5 мА (для ВУ типа И), более 11 В (для ВУ типа У).

При **о**<u>И</u>**ЕdИ**Е**=**0 управление работой аналогового ВУ отключено, при этом состояние ВУ задается параметром **оFFdRE**.

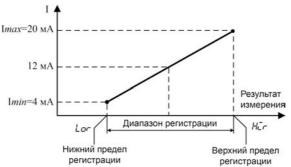


Рисунок 4.5 – Принцип формирования выходного сигнала ВУ в режиме регистратора для приборов с ВУ типа И

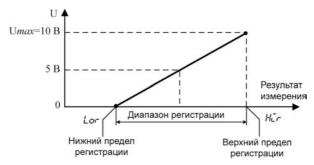


Рисунок 4.6 – Принцип формирования выходного сигнала ВУ в режиме регистратора для приборов с ВУ типа У

4.3.2 Режим конфигурации

Режим конфигурации предназначен для изменения и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров. Заданные значения сохраняются при выключении питания в памяти прибора.

Примечание – Если утеряно значение введенного пароля, вход в режим конфигурации можно осуществить, введя «1098». Изменение пароля доступно только по сети RS-485.

4.3.2.2 Переключение между пунктами меню в режиме конфигурации осуществляется кнопками и меню в режиме конфигурации осуществляется кнопками и мено в режиме выбранного параметра осуществляется кнопкой прок. В режиме редактирования параметра выбор необходимого значения осуществляется кнопками и мено в режиме параметра выбор необходимого значения осуществляется кнопками и мено в режиме конфигурации осуществляется кнопками и мено в режиме параметра осуществляется кнопками и мено в режиме редактирования параметра выбор необходимого значения осуществляется кнопками и мено в режиме параметра осуществляется кнопками и мено в режиме параметра осуществляется кнопками и мено в режиме параметра осуществляется кнопками и мено в параметра осущес

Примечание — В случае отсутствия воздействий пользователя на кнопки прибора в течение 2 минут в режиме редактирования параметра прибор автоматически восстанавливает его значение и возвращается в режим просмотра параметров.

4.3.2.3 Для выхода из режима настроек нажать кнопку «

Примечание – В случае отсутствия воздействий пользователя на кнопки прибора в течение 2 минут в режиме настроек прибор автоматически возвращается в режим тахометра.

4.3.2.4 Параметры настройки прибора и возможные значения каждого из параметров представлены на рисунках 4.7-4.10 и в Приложении В.

Примечание — При входе в меню настроек прибор не прекращает функционирование в рабочем режиме (продолжает вести измерение интервала времени между импульсами, счет времени наработки, управляет работой ВУ).

4.3.3 Режим юстировки

Режим «ЮСТИРОВКА» предназначен для восстановления метрологических характеристик прибора в случае изменения их после длительной эксплуатации или проведения ремонтных работ.

Юстировка проводится только для аналоговых выходов.

Юстировка приборов проводится только квалифицированными специалистами метрологических служб.

Юстировку можно проводить при помощи сервисного меню прибора или по сети RS-485.

Порядок выполнения юстировки прибора приведен в Приложении Г.

Параметры юстировки и отображение на индикаторе возможных значений каждого из параметров представлены на рисунке 4.11.

4.3.4 Настройка прибора с ПК

Переход из режима тахометра в режим настроек параметров связи с ПК осуществляется одновременным нажатием и удержанием кнопок $^{\text{прос}}$ и $^{\text{ср}}$ в течение не менее 2 секунд.

Навигация по меню настроек сети аналогична работе в режиме конфигурации (см. п. 4.3.2.2, 4.3.2.3).

Прибор поддерживает два протокола связи: MODBUS RTU и MODBUS ASCII.

Адреса, названия и размерности параметров прибора приведены в Приложении В.

Параметры настройки связи с ПК и отображение на индикаторе возможных значений каждого из параметров представлены на рисунке 4.12.

Для входа в меню "Конфигурация" нажать и удерживать не менее 2 сек кнопку 📼. Ввести пароль с помощью кнопок 🔇 , 😿 и 🙈 . Нажать 🚾. Нажать 🔇 . Если пароль равен 0 (пароль по умолчанию) нажать кнопку («). Для выхода из меню нажать кнопку («) в режиме просмотра параметров минута секунда Интервал измерения тахометра Фильтр показаний тахометра установка значения параметра в диапазоне от 0 до 50 сек Точность показаний тахометра (положение десятичной точки) Точность множителя (положение десятичной точки) выбор цифры для изменения Множитель - установка значения параметра в диапазоне от 1 до 999 - выбор цифры для изменения Фильтр входного сигнала тахометра - установка значения параметра в диапазоне от 1 до 2500 Гц Значения параметра от 0 до 999999 Пароль Только чтение Состояние дискретного выхода

Рисунок 4.7 - Меню «Конфигурация»

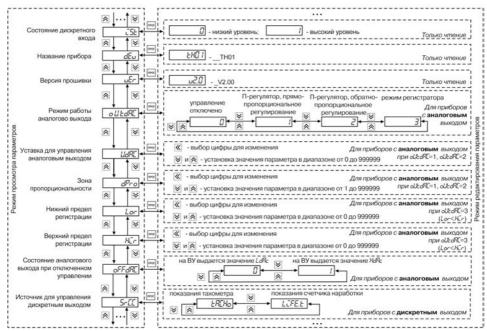


Рисунок 4.8 – Меню «Конфигурация» (продолжение)

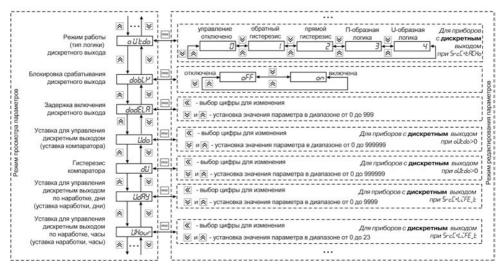


Рисунок 4.9 - Меню «Конфигурация» (продолжение)

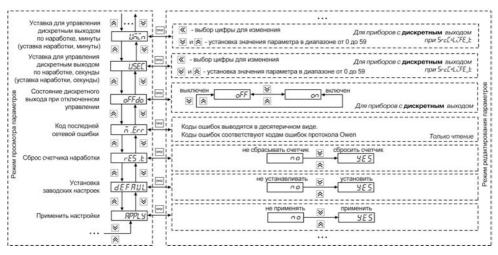


Рисунок 4.10 – Меню «Конфигурация» (окончание)

Для входа в меню "Юстировка" нажать и удерживать не менее 2 сек № + ≪. Ввести пароль с помощью кнопок (С, 😿 и 🔊 , Нажать 🚾 Нажать (С, Если пароль равен 0 (пароль по умолчанию) нажать (С, Для выхода из меню нажать кнопку (С) в режиме просмотра параметров. Режим просмотра параметров Режим редактирования параметров Значение кода, выдаваемого на ЦАП выбор цифры для изменения для установки минимального значения LdRE и 🖈 - установка значения параметра от -1000 до 1000 выходного сигнала Значение кода, выдаваемого на ЦАП выбор цифры для изменения для установки максимального значения и 🔊 - установка значения параметра от -1000 до 1000 выходного сигнала не применять применить RPPLY . Применить настройки

Рисунок 4.11 - Меню «Юстировка»

Для входа в меню "Настройка параметров связи с ПК" нажать и удерживать не менее 2 сек [==] + [♠].
Ввести пароль с помощью кнопок (€], [♠] и [♠]. Нажать [==]. Нажать [♠]. Если пароль равен 0 (пароль по умолчанию) нажать [♠]. Для выхода из меню нажать кнопу (€) в режиме просмотра параметров.

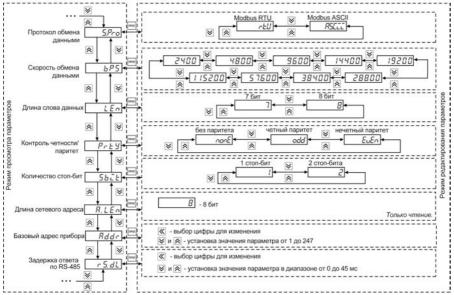


Рисунок 4.12 - Меню «Настройка параметров связи с ПК»

5 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классам II и III в соответствии с ГОСТ 12.2.007.0-75.

При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

Во избежание поломок прибора и поражения электрическим током персонала не допускается:

- класть или вешать на прибор посторонние предметы, допускать удары по корпусу;
- производить монтаж и демонтаж, любые подключения к прибору и работы по его техническому обслуживанию при включенном питании прибора.

6 Техническое обслуживание

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя выполнение следующих операций:

- очистку корпуса и клеммника прибора от пыли, грязи и посторонних предметов;
- проверку качества крепления прибора;
- проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

7 Маркировка

На корпус прибора наносятся:

- наименование или условное обозначение прибора;
- степень защиты по ГОСТ 14254;
- род питающего тока и напряжение питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- знак утверждения типа средств измерений;
- знак соответствия по ГОСТ Р 50460;
- заводской номер прибора и год выпуска;
- товарный знак.

На потребительскую тару наносятся:

- наименование прибора;
- заводской номер прибора и год выпуска.

8 Транспортирование и хранение

- 8.1 Приборы транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 8.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до +55 °C с соблюдением мер защиты от ударов и вибраций.
 - 8.3 Перевозку осуществлять в транспортной таре поштучно или в контейнерах.
- 8.4 Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Приборы следует хранить на стеллажах.

9 Комплектность

Прибор	1 шт.
Паспорт	1 экз.
Руководство по эксплуатации	1 экз.
Гарантийный талон	1 экз.

Примечание — Изготовитель оставляет за собой право внесения дополнений в комплектность изделия. Полная комплектность указывается в паспорте на прибор.

10 Гарантийные обязательства

- 10.1 Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 10.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 10.3 В случае выхода прибора из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.
 - 10.4 Порядок передачи изделия в ремонт содержатся в паспорте и в гарантийном талоне.

Приложение А. Габаритные чертежи корпусов прибора

Рисунок А.1 демонстрирует габаритные и установочные чертежи прибора настенного крепления Н.

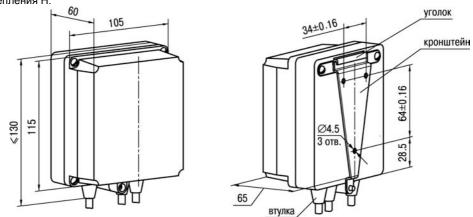


Рисунок А.1 – Прибор настенного крепления Н

На рисунке А.2 приведены габаритные и установочные чертежи прибора щитового крепления Щ2.



Рисунок А.2 – Прибор щитового крепления Щ2

Приложение Б. Схемы подключения прибора

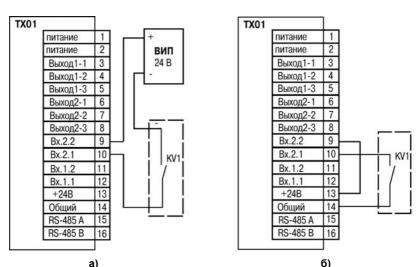


Рисунок Б.1 – Подключение к входу коммутационных устройств: а) при работе датчика от внешнего источника питания; б) при работе датчика от внутреннего источника питания

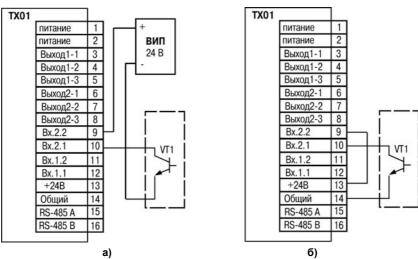


Рисунок Б.2 – Подключение пассивных датчиков, имеющих на выходе транзистор *n-p-n* типа с открытым коллекторным входом:

- а) при работе датчика от внешнего источника питания;
- б) при работе датчика от питающего напряжения прибора

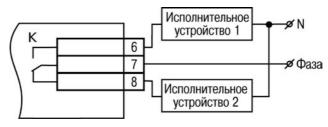


Рисунок Б.3 – Схема подключения нагрузки к ВУ типа Р

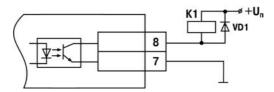


Рисунок Б.4 – Схема подключения нагрузки к ВУ типа К

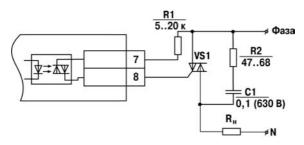


Рисунок Б.5 – Схема подключения силового симистора к ВУ типа С

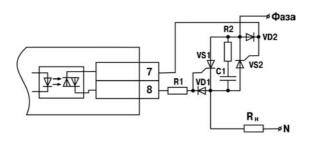


Рисунок Б.6 – Схема подключения к ВУ типа С двух тиристоров, подключенных встречно-параллельно

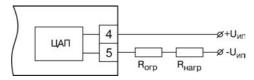


Рисунок Б.7 – Схема соединения ЦАП с нагрузкой для ВУ типа И

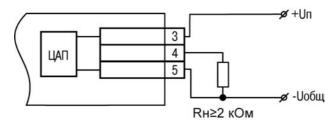


Рисунок Б.8 – Пример подключения ВУ типа У

Приложение В. Программируемые параметры

Таблица В.1 – Программируемые параметры

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
		Сетевые параметры		
Протокол обмена 5.Рга (t.Pro)	0x0008	0 – ASCII (#5[[]); 1 – RTU (ŗĿĽ)	unsigned char	Запись/Чтение. <i>По умолчанию</i> – 1
Скорость обмена, бит/сек <i>ЬР</i> 5 (bPS)	0x0009	0 - 2400 (2400); 1 - 4800 (4800); 2 - 9600 (9600); 3 - 14400 (14400); 4 - 19200 (19200); 5 - 28800 (28800); 6 - 38400 (38400); 7 - 57600 (57600); 8 - 115200 (15200)	unsigned char	Запись/Чтение. По умолчанию – 8
Длина слова данных, бит <i>LEn</i> (Len)	0x000A	0 - 7 (7); 1 - 8 (E)	unsigned char	Запись/Чтение. По умолчанию – 1

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Контроль четности РгЕЧ (PrtY)	0x000C	0 — контроля нет (nanE); 1— четность (add); 2 — нечетность (EuEn)	unsigned char	Запись/Чтение. По умолчанию – 0
Количество стоп-бит 5b ct (Sbit)	0x000B	0 — 1 стоп-бит (/); 1 — 2 стоп-бита (/)	unsigned char	Запись/Чтение. По умолчанию – 0
Длина сетевого адреса, бит <i>Я.LE</i> (Len)	0x0007	0 – 8 (#);	unsigned char	Чтение. <i>По умолчанию</i> – 0
Сетевой адрес прибора <i>Яddг</i> (Addr)	0x0006	от 1 до 247	unsigned short	Запись/Чтение. <i>По умолчанию</i> –16
Задержка ответа прибора, мс г5.dL (rS.dL)	0x000D	от 0 до 45	unsigned char	Запись/Чтение. <i>По умолчанию</i> – 2
Сетевой таймаут, сек. Не отображается на ЦИ	0x000E	от 0 до 255	unsigned char	Запись/Чтение. <i>По умолчанию</i> – 120

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Па	араметры д	цля приборов с аналоговы <mark>к</mark>	и выходом	
Режим работы аналогового выхода <i>allEdRE</i> (oUtdAC)	0x0031	 0 – ВУ отключено (Д); 1 – П-регулятор прямо пропорциональный (1); 2 – П-регулятор обратно пропорциональный (Д); 3 – Регистратор (Д) 	unsigned char	Запись/Чтение. По умолчанию – 3
Значение уставки U аналогового ВУ <i>udЯс</i> (udAc)	0x0032 0x0033	от 0 до 999999	unsigned long	Запись/Чтение. Только в режиме П- регулятора. По умолчанию – 0
Значение зоны пропорциональности П dPro (dPro)	0x0034 0x0035	от 1 до 999999	unsigned long	Запись/Чтение. Только в режиме П- регулятора. По умолчанию – 1
Значение нижнего предела регистрации (U-L) <i>Lar</i> (Lor)	0x0036 0x0037	от 0 до 999999	unsigned long	Запись/Чтение. Только в режиме регистратора. Lor < Н Ст. По умолчанию – 0

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Значение верхнего предела регистрации (U-H) <i>HCr</i> (Hir)	0x0038 0x0039	от 0 до 999999	unsigned long	Запись/Чтение. Только в режиме регистратора. Lor < Н -г. По умолчанию–2500
Состояние аналогового ВУ при отключенном управлении <i>pFFdRL</i> (oFFdAC)	0x003A	0 – На ВУ выдается значение <i>L dFL</i> (<i>I</i>);1 – На ВУ выдается значение <i>HdFL</i> (<i>I</i>)	unsigned char	Запись/Чтение. По умолчанию – 0
Параметры для приборов с дискретным выходом				
Источник сигнала для дискретного выхода <i>5-LL</i> (SrCC)	0x0013	0 – результат измерения тахометра (ŁЯĽНо); 1 – На ВУ выдается значение НdЯс (LՇFE.Ł)	unsigned char	Запись/Чтение. <i>По умолчанию</i> – 0

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Тип логики дискретного ВУ <i>alikda</i> (oUtdo)	0x0014	0 – управление ВУ отключено (ВУ переводится в состояние определенное параметром oFFdo) (I); 1 – тип логики 1 (обратный гистерезис) (I); 2 – тип логики 2 (прямой гистерезис) (C); 3 – тип логики 3 (П-образная) (J); 4 – тип логики 4 (U-образная) (Y)	unsigned char	Запись/Чтение. Только для входа компаратора — тахометр (5гсГ=ЕНГНо) По умолчанию — 0
Блокировка срабатывания дискретного выхода dobLP (dobLK)	0x0015	0 — отключена (<i>øFF</i>); 1 — включена (<i>øn</i>)	unsigned char	Запись/Чтение. По умолчанию — 0 При установке параметра в состояние оп — дискретный выход сохраняет свое последнее состояние

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Задержка срабатывания дискретного выхода, сек dodELЯ (dodELA)	0x0016	от 0 до 999	unsigned short	Запись/Чтение. По умолчанию – 0
Уставка для управления дискретным выходом <i>Ца</i> (Udo)	0x0017 0x0018	от 0 до 999999	unsigned long	Запись/Чтение. <i>По умолчанию</i> – 10 при <i>оЦь do</i> > 0
Гистерезис компаратора <i>d</i> Ш (dU)	0x0019 0x0020	от 0 до 999999	unsigned long	Запись/Чтение. <i>По умолчанию</i> – 1 при <i>оЦЕdo</i> > 0
Значение уставки для управления дискретным выходом по наработке, дней <i>Ца</i> ЯУ (UdAY)	0x001B	от 0 до 9999	unsigned short	Запись/Чтение. При 5-г£ = LčF£_Ł . <i>По умолчанию</i> – 0

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Значение уставки для управления дискретным выходом по наработке, ч ЦНоUr)	0x001C	от 0 до 23	unsigned char	Запись/Чтение. При 5 г <i>с</i> Г = L C F E L D D D D D D D D D D
Значение уставки для управления дискретным выходом по наработке, мин	0x001D	от 0 до 59	unsigned char	Запись/Чтение. При 5 г <i>ـ</i> С = L.Г FЕ_ L По умолчанию – 0
Значение уставки для управления дискретным выходом по наработке, сек USEC (USec)	0x001E	от 0 до 59	unsigned char	Запись/Чтение. При 5 г <i>ـ</i> С = L.Г FЕ_ L По умолчанию – 0
Состояние дискретного ВУ при отключенном управлении (olltdo=0) aFFda (oFFdo)	0x001F	0 — ВУ отключено (оFF); 1 — ВУ включено (ол)	unsigned char	Запись/Чтение. При ойŁdo =0. <i>По умолчанию</i> – oFF

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Размерность показаний тахометра <u>dŁŁЯ (dttA)</u>	0x0020	0 – об/сек (5ЕІ); 1 – об/мин (ліл); 2 – об/час (НьШ г)	unsigned char	Запись/Чтение. По умолчанию – SEL
Фильтр показаний тахометра ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	0x0021	от 0 до 50 сек	unsigned char	Запись/Чтение. Время заполнения буфера из 8 значений для усреднения показаний. По умолчанию — 0
Положение десятичной точки показаний прибора <i>dP</i> (dP)	0x0022	0 () 1 () 2 () 3 () 4 ()	unsigned char	Запись/Чтение. По умолчанию – 0
Положение десятичной точки множителя <i>FdP</i> (FdP)	0x0023	0 () 1 () 2 () 3 () 4 ()	unsigned char	Запись/Чтение. По умолчанию – 0

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Множитель <i>F</i> (F)	0x0024	от 1 до 999 (от 0,0001 до 999 с учетом <i>FdP</i>)	unsigned short	Запись/Чтение. <i>По умолчанию</i> – 1
Максимальная частота входного сигнала на счетном входе, Гц <i>FrE</i> q (Freq)	0x0025 0x0026	от 1 до 2500	unsigned long	Запись/Чтение. <i>По умолчанию</i> – 2500
Пароль <i>РЯ</i> 55 (PASS)	0x0027 0x0028	от 0 до 999999	unsigned long	Только чтение. По умолчанию – 0
Измеренное значение оборотов в единицах 1/dttA. Не отображается на ЦИ	0x0029 0x002A	от 0 до 999999	unsigned long	Только чтение
Время наработки, сек. Не отображается на ЦИ	0x002B 0x002C	от 0 до 359999 Формат: ЧЧ.ММ.СС ЧЧЧЧ.ММ ДДДД.ЧЧ	unsigned long	Только чтение

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Состояние дискретного выхода • 6St (oSt)	0x002D	0 – ВУ отключено (оFF) 1 – ВУ включено (о л)	unsigned char	Только чтение
Состояние дискретного входа ••••••••••••••••••••••••••••••••••••	0x002E	0 – низкий уровень (I) 1 – высокий уровень (/)	unsigned char	Только чтение
Название прибора dEu (dEv)	0x0000 0x0001 0x0002	TH01 (Ł## /)	char[6]	Только чтение
Версия прошивки иЕг (VEr)	0x0003 0x0004 0x0005	_V2.00 (uਟੋ. [])	char[6]	Только чтение
Код последней сетевой ошибки л.Егг (m.Err)	0x0011	от 0 до 255. Коды ошибок соответствуют кодам ошибок протокола Owen	unsigned char	Только чтение

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Вариант исполнения прибора. Не отображается на ЦИ	0x0012	0 – нет выходных устройств; 1 – только дискретное выходное устройство; 2 – только аналоговое выходное устройство; 3 – дискретное и аналоговое выходные устройства	unsigned char	Только чтение
		Команды		
Сброс счетчика наработки rESELL (RESETT)	0x002F	1 – сбросить счетчик (УЕ5)	unsigned char	Только запись
Сброс в заводские установки <i>dEFRLIL</i> (DEFAUL)	0x0030	1 – сбросить в заводские установки (УЕ5)	unsigned char	Только запись
Применить сетевые настройки <i>ЯРРLУ</i> (APPLY)	0x000F	1 – применить настройки (УЕ5)	unsigned char	Только запись

Параметр	Номера регистров Modbus, HEX	Данные записи/чтения по RS-485 (отображение на ЦИ)	писи/чтения по RS-485	
		Юстировка		
Значение кода, выдаваемого на ЦАП для установки минимального значения выходного сигнала <i>LdRL</i> (LdAC)	0x003B	от -1000 до 1000	signed short	Запись/Чтение. Только в режиме юстировки. По умолчанию – 0
Значение кода, выдаваемого на ЦАП для установки максимального значения выходного сигнала <i>НАЯЕ</i> (HdAC)	0x003C	от -1000 до 1000	signed short	Запись/Чтение. Только в режиме юстировки. По умолчанию – 0

Окончание таблицы В.1

Параметр	Номера регистров Modbus, НЕХ	Данные записи/чтения по RS-485 (отображение на ЦИ)	Тип данных	Примечания
Смещение нижней границы токового выхода. Не отображается на ЦИ	0x003D	от -1000 до 1000	signed short	Только запись. Передаётся желательное смещение кода ЦАП относительно текущего. По умолчанию – 0
Смещение верхней границы токового выхода. Не отображается на ЦИ	0x003E	от 1000 до -1000	signed short	Только запись. Передаётся желательное смещение кода ЦАП относительно текущего. По умолчанию – 0
Применение калибровки токового выхода. Не отображается на ЦИ	0x003F	0 — не применять; 1 — применять	unsigned char	Только запись. По умолчанию – 0

Приложение Г. Юстировка прибора

Г.1 Юстировка выходных ЦАП «параметр-напряжение от 0 до 10 В» (выход типа У) или «параметр-ток от 40 до 20 мА» (выход типа И)

Г.1.1 Подготовка рабочего места

Подключить к юстируемому выходу нагрузку Rн и вольтметр согласно рисунку Г.1 для выхода типа У (рисунку Г.2 для выхода типа И). В качестве Rн можно использовать магазин сопротивлений Р4831 или подобный ему с классом точности не более 0,05, а в качестве вольтметра использовать прибор с классом точности не более 0,05, например, В1-12.

Подать питание на прибор. На цифровом индикаторе отобразится $I\!\!I$. Прибор находится в рабочем режиме.

Юстировка заключается в подборе минимального и максимального значения выходного сигнала.

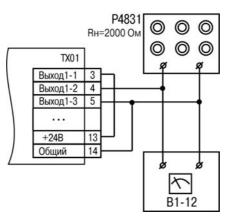


Рисунок Г.1 – Юстировка значений выходного напряжения

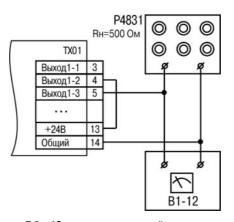


Рисунок Г.2 – Юстировка значений выходного тока

Г.1.2 Алгоритм юстировки выходного аналогового устройства

Юстировку выходного устройства аналогового типа проводить в следующей последовательности:

а) Изменяя код ЦАП и контролируя ток (напряжение) на выходе аналогового устройства добиться значения выходного сигнала, соответствующего меньшей желаемой границе выдаваемого тока или напряжения (в общем случае 4 мА или 0 В).

- б) Сообщить прибору, что текущий код ЦАП соответствует меньшей желаемой границе сигнала на выходе аналогового устройства.
- в) Изменяя код ЦАП и контролируя ток (напряжение) на выходе аналогового устройства добиться значения выходного сигнала, соответствующего большей желаемой границе выдаваемого или напряжения (в общем случае 20 мА или 10 В).
- г) Сообщить прибору, что текущий код ЦАП соответствует большей желаемой границе тока на выходе аналогового устройства.
 - д) Применить параметр «APPLY», установив его в значение «YES».
 - е) Выйти из меню калибровки.

Г.1.3 Юстировка выходного аналогового устройства по сети RS-485

Команды, используемые при юстировке, приведены в приложении В.

Юстировка выполняется согласно следующей последовательности:

Г.1.3.1 При помощи команды:

Команда	Регистр ModBus	Тип данных	Число регистров ModBus	Допустимые значения	Примечание
Смещение нижней границы токового выхода	0x003D	signed short	1	от -1000 до 1000	Только запись. Передаётся желательное смещение кода ЦАП относительно текущего

добиться выполнения условия, предусмотренного пунктом «а» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Г.1.3.2 При помощи команды:

Команда	Регистр ModBus	Тип данных	Число регистров ModBus	Допустимые значения	Примечание
Смещение верхней границы токового выхода	0x003E	signed short	1	от -1000 до 1000	Только запись. Передаётся желательное смещение кода ЦАП относительно текущего

добиться выполнения условия, предусмотренного пунктом «в» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Первая подача данной команды будет считаться выполнением условия «б» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Г.1.3.3 При помощи команды

Команда	Регистр ModBus	Тип данных	Число регистров ModBus	Допустимые значения	Примечание
Применение	0x003F	unsigned	1	0 – не	Только запись
калибровки		char		применять;	
токового выхода				1 – применять	

сообщить прибору про выполнение условия, предусмотренного пунктом «д» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Первая подача данной команды будет считаться выполнением условия «г» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Г.1.4 Юстировка выходного аналогового устройства при помощи сервисного меню прибора

Для входа в режим юстировки выполнить следующие действия:

- войти в режим юстировки путем одновременного нажатия и удержания не менее
 2 секунд кнопок прот и на лицевой панели прибора;
- кнопками <
 конфигурированию (если он не равен 0);
- нажатие кнопки подтвердить выбор пароля;
- на цифровом индикаторе отобразится название параметра LdRL.

Для подбора минимального значения выходного сигнала выполнить следующие действия:

- нажатием кнопки прот выбрать параметр LdRL (код ЦАП, соответствующий минимальному значению выходного сигнала) для редактирования;
- при помощи пункта меню *LdЯL* , добиться выполнения условия, предусмотренного пунктом «а» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).
- нажать кнопку $^{\text{[npor]}}$ для подтверждения изменений, на индикаторе отобразится название параметра *LdRL*.

Для подбора максимал<u>ьно</u>го зн<u>аче</u>ния выходного сигнала выполнить следующие действия:

- нажать кнопку
 мли
 для выбора параметра
- при помощи пункта меню НАЯГ, добиться выполнения условия, предусмотренного пунктом «в» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Первая подача данной команды будет считаться выполнением условия «б» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).

Для применения калибровки выполнить следующие действия:

- нажать кнопку 🖎 или 👺 для выбора параметра *ЯРРLУ*:
- нажатием кнопки прог. выбрать параметр ЯРРЦУ.
- при помощи пункта меню *ЯРР* У, сообщить прибору про выполнение условия, предусмотренного пунктом «г» алгоритма юстировки выходного аналогового устройства (см. Г.1.2).
- нажать кнопку подтверждения изменений;
- нажать кнопку <a> для выхода в рабочий режим.

Примечание – Параметры *LdRE* и *HdRE* принимают значения от -1000 до 1000.

Лист регистрации изменений

Nº		Номера лис	стов (стр.)	Всего	Дата		
изменения	лионония измен заменен навиж вилияна лио	листов (стр.)	внесения	Подпись			

Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45

www.owen.ru

Отдел сбыта: sales@owen.ru Группа тех. поддержки: support@owen.ru

> Рег. № 1692 Зак. №